
B501 Assignment 1
Enrique Areyan

Due Date: January 18, 2012
Due Time: 11:00pm

1. Prove by mathematical induction that

∀n ≥ 0 :

n∑
i=0

2i = 2n+1 − 1.

Solution: Base case: n = 0⇒ 20 = 1 = 20+1 − 1. It holds.

We want to prove that:

n∑
i=0

2i = 2n+1 − 1⇒
n+1∑
i=0

2i = 2(n+1)+1 − 1

Proof:

n+1∑
i=0

2i =

n∑
i=0

2i + 2n+1 = 2n+1 − 1 + 2n+1 = 2 · 2n+1 − 1 = 2(n+1)+1 − 1

Q.E.D

2. Prove by mathematical induction that

∀n ≥ 0 : 13n − 6n is divisible by 7

Solution: A number x is divisible by 7 if x = 7 · k, for some integer k
Base case: n = 0⇒ 130 − 60 = 1− 1 = 0 = 7 · 0. It holds.

We want to prove that:

13n − 6n is divisible by 7⇒ 13n+1 − 6n+1 is divisible by 7

Alternatively,

13n − 6n = 7 · k ⇒ 13n+1 − 6n+1 = 7 · l

where k and l are both integers.

Proof:

13n+1−6n+1 = 13·13n−6n+1 = 13·(7·k+6n)−6·6n = 13·7·k+13·6n−6·6n = 13·7·k+7·6n =

= 7 · (13 · k + 6n) = 7 · l, where l is an integer (both k and n are integers)

Q.E.D
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3. Prove by mathematical induction that

∀n ≥ 2 : 1 + 2n < 3n

Solution: Base case: n = 2⇒ 1 + 22 = 1 + 4 = 5 < 9 = 32. It holds.

We want to prove that:

1 + 2n < 3n ⇒ 1 + 2n+1 < 3n+1

Proof:
1 + 2n < 3n hypothesis
2 + 2n+1 < 2 · 3n multiply by 2 the hypothesis
2 + 2n+1 < 2 · 3n < 3 · 3n new upper bound still holds (3 > 2)
1 + 2n+1 < 2 + 2n+1 < 2 · 3n < 3 · 3n new lower bound still holds
1 + 2n+1 < 3n+1 = 3 · 3n follows from previous statement

Q.E.D

4. Consider the following function sum from the natural numbers to the
natural numbers. The natural numbers are denoted by N in this function.

function sum(n in N): N

{

if n==0 return 0

else return n + sum(n-1)

}

Prove by mathematical induction that

∀n ≥ 0 : sum(n) =
n(n + 1)

2

Solution: The function sum(n) can be written as
∑n

i=0 i.

Base case: n = 0⇒
∑0

i=0 i = 0 = 0(0+1)
2 . It holds.

We want to prove that:

n∑
i=0

i =
n(n + 1)

2
⇒

n+1∑
i=0

i =
(n + 1)((n + 1) + 1)

2
=

n2 + 3n + 2

2

Proof:
n+1∑
i=0

i =

n∑
i=0

i+(n+1) =
n(n + 1)

2
+(n+1) =

n(n + 1) + 2n + 2

2
=

n2 + 3n + 2

2

Q.E.D
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5. Define the set B of binary trees as follows:

(a) A tree with a single node r is in B; and

(b) If r is a node and T1 and T2 are binary trees, i.e., T1 ∈ B and T2 ∈ B,
then the tree T = (r, T1, T2) is a binary tree, i.e., T is in B. You
should view T as a tree with root r with r having as left child the
tree T1 and as right child the tree T2.

Define a node of a binary tree to be a full if it has both a non-empty
left and a non-empty right child. Prove by structural induction that the
number of full nodes in a binary tree is 1 fewer than the number of leaves.
(Hint: Consider binary trees as defined in class.)

Solution:
Let us first define · to be a tree with a single node, T ∈ B to be any binary
tree according to the definition (T1 being its left child and T2 being its
right), and the following two functions:

#f : B 7→ N , number of full nodes defined as:
1. #f(·) = 0
2. #f(T ) = 1 + #f(T1) + #f(T2)

#l : B 7→ N , number of leaves defined as:
1. #l(·) = 1
2. #l(T ) = #l(T1) + #l(T2)

We want to show that the following property holds:

∀T ∈ B : #f(T ) = #l(T )− 1

Base case: #f(·) = 0 = 1− 1 = #l(·)− 1. It holds.

Proof:
#f(T ) = 1 + #f(T1) + #f(T2) (definition of #f)

= 1 + #l(T1)− 1 + #l(T2)− 1 (hypothesis)
= #l(T1) + #l(T2)− 1 (by simple algebra)
= #l(T )− 1 (by definition of #l). Q.E.D

6. Let E denote the set of arithmetic expressions. The recursive definition
for E is as follows:

• if n is a positive integer then n is in E;

• if e1 and e2 are in E, then (e1 + e2) is in E;

• if e1 and e2 are in E, then (e1 ∗ e2) is in E.
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Write a recursive function Replace using appropriate pseudo-code which
takes as input an expression in e in E and returns an expression in E
wherein each number is replaced by the number 1.

For example, if e is the expression

((((2 + 3) ∗ 3) ∗ (5 + (3 ∗ 5))))

then Replace(e) is the expression

((((1 + 1) ∗ 1) ∗ (1 + (1 ∗ 1))))

Then prove by structural induction on the recursive definition of the ex-
pressions in E that the value of an expression e in E is at least the value
of Replace(e).

For example, the value of

((((2 + 3) ∗ 3) ∗ (5 + (3 ∗ 5))))

is 300, whereas the value of

((((1 + 1) ∗ 1) ∗ (1 + (1 ∗ 1))))

is 4.

Solution:

First, let us define the function Replace (R) as follow (in a mathemat-
ical sense):
R : E 7→ E, such that:
if e = n, a positive integer, then, R(e) = 1,
if e = (e1 + e2) then, R(e) = (R(e1) + R(e2)),
if e = (e1 ∗ e2) then, R(e) = (R(e1) ∗R(e2))

Now, in pseudo code:

function replace(e in E): E

{

if e>0 return 1

else if e == e_1+e_2 return (R(e_1) + R(e_2))

else return (R(e_1) * R(e_2))

}

Now, we want to prove a property of the members of this set. But before
I do this, let us define yet another function:
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V : E 7→ Z+ (V stands for value):
if e = n, a positive integer, then, V (e) = n,
if e = (e1 + e2) then, V (e) = (V (e1) + V (e2)),
if e = (e1 ∗ e2) then, V (e) = (V (e1) ∗ V (e2))

The property we want to prove by structural induction is:

∀e ∈ E : V (e) ≥ V (R(e))

Base case: e = n ⇒ V (e) = n, by definition, and V (R(n)) = V (1) = 1.
Thus n ≥ 1, the property holds.

Proof:
Let e = (e1 + e2), then

V (e) = V (e1) + V (e2) (definition of V )
≥ V (R(e1)) + V (R(e2)) (hypothesis)
= V (R(e1) + R(e2)) (by definition of V , and the fact that we can consider R(e1) and

R(e2) to be just another two expressions in E.
= V (R(e)) (by definition of R).

A similar proof follows for the operation ∗. Q.E.D
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