B501 Assignment 1 Enrique Areyan

Due Date: January 18, 2012 Due Time: 11:00pm

1. Prove by mathematical induction that

$$
\forall n \geq 0: \sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

Solution: Base case: $n=0 \Rightarrow 2^{0}=1=2^{0+1}-1$. It holds.
We want to prove that:

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1 \Rightarrow \sum_{i=0}^{n+1} 2^{i}=2^{(n+1)+1}-1
$$

Proof:
$\sum_{i=0}^{n+1} 2^{i}=\sum_{i=0}^{n} 2^{i}+2^{n+1}=2^{n+1}-1+2^{n+1}=2 \cdot 2^{n+1}-1=2^{(n+1)+1}-1$
Q.E.D
2. Prove by mathematical induction that

$$
\forall n \geq 0: 13^{n}-6^{n} \text { is divisible by } 7
$$

Solution: A number x is divisible by 7 if $x=7 \cdot k$, for some integer k Base case: $n=0 \Rightarrow 13^{0}-6^{0}=1-1=0=7 \cdot 0$. It holds.

We want to prove that:
$13^{n}-6^{n}$ is divisible by $7 \Rightarrow 13^{n+1}-6^{n+1}$ is divisible by 7
Alternatively,

$$
13^{n}-6^{n}=7 \cdot k \Rightarrow 13^{n+1}-6^{n+1}=7 \cdot l
$$

where k and l are both integers.

Proof:

$13^{n+1}-6^{n+1}=13 \cdot 13^{n}-6^{n+1}=13 \cdot\left(7 \cdot k+6^{n}\right)-6 \cdot 6^{n}=13 \cdot 7 \cdot k+13 \cdot 6^{n}-6 \cdot 6^{n}=13 \cdot 7 \cdot k+7 \cdot 6^{n}=$ $=7 \cdot\left(13 \cdot k+6^{n}\right)=7 \cdot l$, where l is an integer (both k and n are integers)
Q.E.D
3. Prove by mathematical induction that

$$
\forall n \geq 2: 1+2^{n}<3^{n}
$$

Solution: Base case: $n=2 \Rightarrow 1+2^{2}=1+4=5<9=3^{2}$. It holds.
We want to prove that:

$$
1+2^{n}<3^{n} \Rightarrow 1+2^{n+1}<3^{n+1}
$$

Proof:

$$
\begin{array}{ll}
1+2^{n}<3^{n} & \text { hypothesis } \\
2+2^{n+1}<2 \cdot 3^{n} & \text { multiply by } 2 \text { the hypothesis } \\
2+2^{n+1}<2 \cdot 3^{n}<3 \cdot 3^{n} & \text { new upper bound still holds }(3>2) \\
1+2^{n+1}<2+2^{n+1}<2 \cdot 3^{n}<3 \cdot 3^{n} & \text { new lower bound still holds } \\
1+2^{n+1}<3^{n+1}=3 \cdot 3^{n} & \text { follows from previous statement }
\end{array}
$$

Q.E.D
4. Consider the following function sum from the natural numbers to the natural numbers. The natural numbers are denoted by N in this function.

```
function sum(n in N): N
{
    if n==0 return 0
    else return n + sum(n-1)
}
```

Prove by mathematical induction that

$$
\forall n \geq 0: \operatorname{sum}(n)=\frac{n(n+1)}{2}
$$

Solution: The function $\operatorname{sum}(n)$ can be written as $\sum_{i=0}^{n} i$.
Base case: $n=0 \Rightarrow \sum_{i=0}^{0} i=0=\frac{0(0+1)}{2}$. It holds.
We want to prove that:

$$
\sum_{i=0}^{n} i=\frac{n(n+1)}{2} \Rightarrow \sum_{i=0}^{n+1} i=\frac{(n+1)((n+1)+1)}{2}=\frac{n^{2}+3 n+2}{2}
$$

Proof:
$\sum_{i=0}^{n+1} i=\sum_{i=0}^{n} i+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)+2 n+2}{2}=\frac{n^{2}+3 n+2}{2}$
Q.E.D
5. Define the set \mathcal{B} of binary trees as follows:
(a) A tree with a single node r is in \mathcal{B}; and
(b) If r is a node and T_{1} and T_{2} are binary trees, i.e., $T_{1} \in \mathcal{B}$ and $T_{2} \in \mathcal{B}$, then the tree $T=\left(r, T_{1}, T_{2}\right)$ is a binary tree, i.e., T is in \mathcal{B}. You should view T as a tree with root r with r having as left child the tree T_{1} and as right child the tree T_{2}.

Define a node of a binary tree to be a full if it has both a non-empty left and a non-empty right child. Prove by structural induction that the number of full nodes in a binary tree is 1 fewer than the number of leaves. (Hint: Consider binary trees as defined in class.)
Solution:
Let us first define \cdot to be a tree with a single node, $T \in \mathcal{B}$ to be any binary tree according to the definition (T_{1} being its left child and T_{2} being its right), and the following two functions:
$\# f: \mathcal{B} \mapsto \mathcal{N}$, number of full nodes defined as:

1. $\# f(\cdot)=0$
2. $\# f(T)=1+\# f\left(T_{1}\right)+\# f\left(T_{2}\right)$
$\# l: \mathcal{B} \mapsto \mathcal{N}$, number of leaves defined as:
3. $\# l(\cdot)=1$
4. $\# l(T)=\# l\left(T_{1}\right)+\# l\left(T_{2}\right)$

We want to show that the following property holds:

$$
\forall T \in B: \# f(T)=\# l(T)-1
$$

Base case: $\# f(\cdot)=0=1-1=\# l(\cdot)-1$. It holds.

$$
\begin{aligned}
& \text { Proof: } \\
& \left.\# f(T)=1+\# f\left(T_{1}\right)+\# f\left(T_{2}\right) \quad \text { (definition of } \# f\right) \\
& =1+\# l\left(T_{1}\right)-1+\# l\left(T_{2}\right)-1 \quad \text { (hypothesis) } \\
& =\# l\left(T_{1}\right)+\# l\left(T_{2}\right)-1 \quad \text { (by simple algebra) } \\
& =\# l(T)-1 \quad \text { (by definition of } \# l \text {). Q.E.D }
\end{aligned}
$$

6. Let E denote the set of arithmetic expressions. The recursive definition for E is as follows:

- if n is a positive integer then n is in E;
- if e_{1} and e_{2} are in E, then $\left(e_{1}+e_{2}\right)$ is in E;
- if e_{1} and e_{2} are in E, then $\left(e_{1} * e_{2}\right)$ is in E.

Write a recursive function Replace using appropriate pseudo-code which takes as input an expression in e in E and returns an expression in E wherein each number is replaced by the number 1 .
For example, if e is the expression

$$
((((2+3) * 3) *(5+(3 * 5))))
$$

then Replace (e) is the expression

$$
((((1+1) * 1) *(1+(1 * 1))))
$$

Then prove by structural induction on the recursive definition of the expressions in E that the value of an expression e in E is at least the value of Replace (e).
For example, the value of

$$
((((2+3) * 3) *(5+(3 * 5))))
$$

is 300 , whereas the value of

$$
((((1+1) * 1) *(1+(1 * 1))))
$$

is 4 .

Solution:

First, let us define the function Replace (R) as follow (in a mathematical sense):
$R: E \mapsto E$, such that:
if $e=n$, a positive integer, then, $R(e)=1$,
if $e=\left(e_{1}+e_{2}\right)$ then, $R(e)=\left(R\left(e_{1}\right)+R\left(e_{2}\right)\right)$,
if $e=\left(e_{1} * e_{2}\right)$ then, $R(e)=\left(R\left(e_{1}\right) * R\left(e_{2}\right)\right)$

Now, in pseudo code:

```
function replace(e in E): E
{
    if e>0 return 1
    else if e == e_1+e_2 return (R(e_1) + R(e_2))
    else return (R(e_1) * R(e_2))
}
```

Now, we want to prove a property of the members of this set. But before I do this, let us define yet another function:
$V: E \mapsto Z^{+}$(V stands for value):
if $e=n$, a positive integer, then, $V(e)=n$,
if $e=\left(e_{1}+e_{2}\right)$ then, $V(e)=\left(V\left(e_{1}\right)+V\left(e_{2}\right)\right)$,
if $e=\left(e_{1} * e_{2}\right)$ then, $V(e)=\left(V\left(e_{1}\right) * V\left(e_{2}\right)\right)$

The property we want to prove by structural induction is:

$$
\forall e \in E: V(e) \geq V(R(e))
$$

Base case: $e=n \Rightarrow V(e)=n$, by definition, and $V(R(n))=V(1)=1$.
Thus $n \geq 1$, the property holds.

Proof:

Let $e=\left(e_{1}+e_{2}\right)$, then

$$
\begin{aligned}
V(e) & =V\left(e_{1}\right)+V\left(e_{2}\right) & & \text { (definition of } V) \\
& \geq V\left(R\left(e_{1}\right)\right)+V\left(R\left(e_{2}\right)\right) & & \text { (hypothesis) } \\
& =V\left(R\left(e_{1}\right)+R\left(e_{2}\right)\right) & & \text { (by definition of } V, \text { and the fact that we can consider } R\left(e_{1}\right) \text { and } \\
& =V(R(e)) & & R\left(e_{2}\right) \text { to be just another two expressions in E. } \\
& & & \text { (by definition of } R) .
\end{aligned}
$$

A similar proof follows for the operation *. Q.E.D

